
h. 1. He-0 Mass Transfer. Vol. 33, No. IO, pp. 2275-2.284. 1990 0017-9310/!9053.Oo+0.00 
Printed in Great Britain Q 1990 Pcrgamon Pm plc 

Heat exchange between unequal countercurrent 
vessels asymmetrically embedded in a cylinder 

with surface convection 
M. ZHU, S. WEINBAUM and L. M. JIJI 

Department of Mechanical Engineering, The City College of the City University of New York, 
New York, NY 10031, U.S.A. 

(Received 16 May 1989 and in jinal form 19 December 1989) 

Abstract-A three-dimensional approximate analytic solution is presented for the unequal countercurrent 
heat transfer between parallel paired vessels asymmetrically embedded in a long cylinder with surface 
convection. The analysis assumes that the velocity profile in the vessels is parabolic, the Peclet number is 
large compared to unity and the radius of the cylinder is several times larger than the distances from the 
center of the cylinder to the vessels. A perturbation method is employed by taking the reciprocal of the 
Peclet number as a small parameter. The new solution approach takes into consideration the axial thermal 
interaction and describes the three-dimensional asymmetric thermal field due to the vessels, the wall 
temperatures of which are nonuniform in the cross-sectional plane. Application of the model to whole 

limb heat transfer is discussed. 

1. INTRODUCTION 

COLXTERCURRENY heat transfer has wide applications 
in industrial problems involving power plant steam 
and water distribution lines, insulation of electrical 
powerlines and certain types of heat exchangers. These 
more traditional applications are summarized in ref. 
[l]. A new area of application which has been the 
subject of numerous studies in the past decade is the 
countercurrent heat exchange between the larger 
countercurrent vessels of the microcirculation [2-l l] 
as well as the major axial arteries and veins that supply 
the human limbs [ 12,131. The countercurrent heat 
exchange between the thermally significant vessels of 
the microcirculation has led to the development of a 
new bioheat equation to describe microvascular 
blood-tissue heat transfer and a fundamental 
expression for the effective conductivity of a medium 
in which there are small paired countercurrent vessels, 
the thermal relaxation lengths of which are small com- 
pared to the length scale of the medium [S]. 

Despite the extensive literature cited above there is 
no existing three-dimensional solution which con- 
siders the axial thermal interaction between the fluid 
in the countercurrent vessels when they are embedded 
in a cylinder of finite radius with a general convective 
boundary condition at the cylinder surface. This 
geometry can be considered as a basic prototype for 
the axial heat transfer in a human limb. Most previous 
studies of countercurrent heat exchange are either 
based on the two-dimensional conduction shape fac- 
tors for embedded vessels and pipes in the cross- 
sectional plane or are simplified analyses of the axial 
interaction in which there is a linear axial temperature 
distribution. In refs. [6, 14, 1.5’J approximate solutions 
are obtained for the conduction shape factors by 
superposing solutions for an infinite line source and 

sink in an infinite medium. Exact solutions for these 
shape factors in an infinite medium, based on the 
bicircular coordinate geometry, are presented in refs. 
[2, 4, 16, 171 for vessels with either constant wall 
temperature or constant heat flux. A related bicircular 
solution for a single buried pipe in a half space is given 
in Bau and Sadhal [18]. The latter solution is novel in 
that the temperature of the fluid in the pipe is matched 
with the surroundings and the wall temperature is 
nonuniform. In ref. [6] the axial interaction equations 
are formulated for an artery-vein pair and shape fac- 
tors are derived for two equal sized vessels embedded 
in a surrounding tissue cylinder with constant wall 
temperature in the cross-sectional plane. The for- 
mulation for the axial interaction is based on a super- 
position which is a summation of the heat exchange 
between a perfect countercurrent heat exchanger and 
the heat loss from the vessel pair to the surface of the 
surrounding tissue cylinder. This analysis is extended 
in ref. [lo] to vessels of unequal size which are at 
constant wall temperature and the theory used to for- 
mally derive an expression which relates the local 
artery-vein temperature difference to the axial gradi- 
ent of the surrounding tissue temperature in the new 
Weinbaum-Jiji bioheat equation [S]. 

The motivation for the present study stems pri- 
marily from the new model for whole limb heat trans- 
fer proposed in ref. [ 131. In this paper the Weinbaum- 
Jiji bioheat equation is applied outside a cylindrical 
core region which contains the large axial vessels of 
the limb. An important restriction on the core energy 
balance in this model is that it requires that the heat 
loss from these central vessels to the surrounding tis- 
sue be small compared to the heat exchange between 
the vessels. The numerical results in ref. 1131 show that 
this assumption will not be satisfied when convective 
heat loss at the skin surface is important and that a 
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NOMENCLATURE 

vessel radius (a and v) 
component of eigenvector, defined by 
equations (20) and (21) 
Biot number of embedding medium 
cylinder 
specific heat of fluid in vessels 
constant, defined by equations (20) and 

(21) 
heat transfer coefficient 
thermal conductivity 
ratio of fluid and embedding medium 
thermal conductivities 
Nusselt number of vessel 
Peclet number of vessel a 
rate of energy loss at vessel wall per unit 
length 
variable, defined by equation (12) 
variable, defined by equation (13) 
radial coordinate 
radius of embedding cylinder 
distance between vessels 
distance from origin to vessel a 
distance from origin to vessel v 
temperature 
environmental temperature 
bulk temperature of vessel a at Z = 0 
mean fluid flow velocity 
ratio of Va to V, 

dimensionless axial coordinate 

Z axial coordinate. 

Greek symbols 

B reciprocal of Peclet number 
e dimensionless temperature 

*, variable, defined by equation (11) 

4 eigenvalue, defined by equation (22) 

P dimensionless radial coordinate 

Pf density of fluid in vessels 

PR dimensionless radius of embedding 
cylinder 
shape factor between vessels 
shape factor between vessel pair and 
environment 
polar angle in cylindrical coordinates. 

Superscript 
_ 

dimensionless. 

Subscripts 
a vessel a 
b bulk 
f fluid in vessels 
m mean value 
t embedding medium 
V vessel v 

W vessel wall 
0 zeroth order. 

more general theory is required for countercurrent 
heat exchange in a cylinder in which there is no restric- 
tion on the convective boundary condition at the cyl- 
inder surface. The solution in ref. [13] also assumes 
that the vessel wall temperatures are uniform in the 
cross-sectional plane and thus neglects the asymmetry 
in the wall temperature distribution created by the 
close juxtaposition of the central artery and vein. 
Recently, Wissler [19] has presented an exact solution 
for the perfect countercurrent heat exchange between 
paired vessels in an infinite medium which includes 
this asymmetry. In this solution there is a linear and 
equal axial temperature gradient in the medium and 
vessels, and the physical properties of the fluid and 
medium are identical and constant throughout the 
region. 

The objective of this paper is to present a more 
general three-dimensional approximate analytic solu- 
tion for the unequal axial countercurrent heat transfer 
between parallel paired vessels asymmetrically embed- 
ded in a long cylinder with surface convection, as 
shown in Fig. 1. Taking the reciprocal of the Peclet 
number as a small parameter, a perturbation method 
is employed to obtain the solution to the temperature 
distributions both in the vessels and the surrounding 

cylinder. The analysis introduces several important 
modifications of Wissler’s [19] basic approach. The 
line heat source and sink used to replace the convective 
heat loss/gain from each vessel are unknown func- 
tions of the axial coordinate and are related to the 
local bulk fluid temperature gradients. The sur- 
rounding cylinder has a general convective boundary 
condition, which leads to an unknown axial variation 
of the heat transfer between the vessels and the vessel 
pair with the environment. The solution also allows 
for a lowest order asymmetric positioning of the 
vessels within the cylinder. 

Results will be presented for the temperature dis- 
tributions inside and outside the vessels for several 
representative cases. The region of biological interest 

FIG. 1. Schematic of the embedding medium cylinder sur- 
rounding the countercurrent vessel pair. 
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FIG. 2. Geometry of the cross-sectional plane and the coor- 
dinate system. 

constitutes a small portion of these results. Explicit 
expressions are obtained for the vessel Nusselt num- 
ber and the conduction shape factors and the results 
are compared with the predictions of the models by 
Baish et al. [6] and Chato [2] for uniform vessel wall 
temperature. An important and surprising result is 
that the Nusselt number is the same as for the fully 
developed flow in a pipe with a constant wall heat 
flux. The theory is then used to develop a simple 
prototype model for the axial temperature dis- 
tributions along the central artery and vein of a human 
limb in which the skin temperature is unknown and 
allowed to vary in both the axial and angular direc- 
tions. The predictions of this model are compared 
with results of an earlier one-dimensional model by 
Mitchell and Myers [ 121 in which the skin temperature 
variation is not considered. The new model is shown 
to provide much better agreement with the exper- 
imental data of Bazett er al. [20] for the axial variation 
of the central artery and vein temperatures. 

2. FORMULATION 

A steady state temperature field is assumed in both 
the vessels and the surrounding cylinder. The analysis 
further assumes that the velocity profile in the vessels 
is parabolic (laminar flow)? and the Peclet number is 
large compared to unity. The vessels are asym- 
metrically located at the central area of the cylinder, 
as shown in Fig. 2, and it is assumed that the radius 
of the cylinder is several times larger than the distances 
from the origin to the vessels. We shall also assume 
that the cylinder is sufficiently long for end effects to 
be neglected. 

We introduce non-dimensional parameters and 
variables as follows : 

t The Reynolds number in the arm or leg is typically 1000 
or less for humans. 

Although the theory is much more general in its appli- 
cation, we have used the biological notation where a 
and v represent an artery and vein. The governing 
dimensionless equations in vessel a and vessel v can 
be written as 

= (l-p:)% for pa c 1 (1) 

f! pael +‘!3+fizE$ 

( > ap ~2 842 

= - y’(1--pi)2 for py < 1. (2) 

In the embedding medium, where there is no flow, the 
energy equation is 

L!! p$ +L!3+p2~=o ( ) 
for pa>1 and ~“21. (3) 

The dimensionless boundary conditions are 

ea.” = 6, at P.,” = 1 (4) 

k’dB,, = dB, at pa,v = 1 

sib apa., 

ae, . 
-=-Eet at p=pR, 
3P 

(5) 

(6) 

Examination of equations and boundary conditions 
(l)-(6) reveals that a perturbation solution for B,, 
and e1 can be sought in the form 0 = f?O+jO, + 0(/I’). 
since /I << 1 for large Pe. Equations (l)-(3) reduce to 
O(1) to 

i a aeao ( 1 i a2eao 
pap p ap - +7 842 -= (l_p:)$ 

for pa < 1 (7) 

I a aevo ( > I a2ea - +T;iJfjp= 
ab 

pap Pap 
- v’u - P3 -g 

for p. < 1 (8) 

i a I a2e,o -- 
P ap ( > cf!! +- 

p ap p2-qT= 0 

for p.21 and pV>,l. (9) 

Equations (7) and (8) are complicated by the con- 
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vective terms on their right-hand side. The partial 
derivatives a&,/& and &7&z are required to describe 
the entrance and exit regions at the cylinder ends 
where the temperature prdfiles develop from their 
initial conditions. Away from these end regions we 
assume the local temperature profiles can be related 
to the local axial temperature gradients in the fluid in 
much the same way that a velocity profile can be 
described by its streamwise pressure gradient. The 
choice of which temperature gradient to use (center- 
line, average, bulk, etc.) is subtle and will be dis- 
cussed later. Thus, the temperature gradients in the 
convection terms on the right-hand side of equations 
(7) and (8) can be approximated by d&/dz and 
df$,/dz in vessels a and v, respectively, where d&/d2 
and dB,/dz are unknown characteristic axial gradi- 
ents in each vessel. This approximation greatly sim- 
plifies the equations since the infinite series of eigen- 
values required to describe the axial development of 
the temperature profiles for the full equations (7) and 
(8) will be reduced to two characteristic eigenvalues 
describing the axial interaction of 19.~ and 8,,. 

3. SOLUTION PROCEDURE 

The solution for &,,, 6,,, BtO, which we denote by 
B,,, can be decomposed into two parts 

8, = e”+ep (10) 

where 6” is a homogeneous solution, and & a par- 
ticular solution. eP is defined as 

in which 

eP = - eae, + evepv (11) 

(12) 

(13) 

It is easily shown that ep satisfies equations (4) and 
(7)-(9) with the replacement of total for partial 
derivatives on the right-hand side of equations (7) and 
(S), but cannot satisfy equation (5) exactly unless 
k’ = 1. However, the vessels are much smaller than 
the cylinder so that ep is a reasonable approximate 
solution when k’ = 1. To satisfy boundary condition 
(6), we first expand tip as a power series in &“/p and 
neglect terms of O(Si.“/pi). We now require that 
0” + ep satisfy equation (6) at p = pR. One obtains the 
approximate homogeneous solution after the un- 
known coefficients are evaluated 

Hence, equation (10) can be written in the form 

e. =a [( -f-lnpR- 
(Bi- l)& 

( , + Bi)pi P ~0s (4 - 4,“) k 

(Bi- l)S, 

-(l+B~)p~~~~~~ (16) 

where ePs and ePy differ according to the regions 
defined in equation (14). Equation (16) describes the 
4 dependence both in the vessels and the surrounding 
cylinder. 

If the solution (16) is substituted in equations (7) 
and (8) and the equations are integrated over the 
cross-sectional area of each vessel, one finds that the 
resulting integrated average equation will be satisfied 
only if f?,, and 8,, are the zeroth-order bulk tem- 
peratures eaM) and &,,. The characteristic axial gradi- 
ents d&,/dz and d&/dz therefore are replaced by their 
corresponding bulk temperature gradients d&,,/dz 
and dB,,/dz. 

Substituting solution (16) for 8, and 6, into the 
definitions of the bulk temperatures 

ea.vb = 2 

2n I 

U no 0 
ed - P:v)Pa.v dPa.v &i& (17) 

and evaluating these double integrals, one obtains the 
differential equations for 6,, and eVbo 

O,, =a[(-A-lnpR)k’-i]$ 

+:$V’k’(~+ln$)~ (18) 

&,=y(-A-lnF)$ 

+!BV.[(~+ln$Y+~]~. (19) 

The coupled linear equations (18) and (19) have solu- 
tions of the form 

RbO = C,A,,exp(1,z)+C,A,,exp(I,z) (20) 

e Vbo = C,A,2exp(I,z)fC2A~2exp(~2z) (21) 

where eigenvalues Li are given by 

i -1.2 = 
-bIf:#-- 16~7) 

a (22) 

eH = k 
[( 

jj+lnp,+ 
(Bi- l)& 
(l+Bop; Pcos(‘#‘-&) >I Q. .=@V’[(h+lnz)k’+$][(-A-lnp,)k 

-k f+lng - 
(Bi- 1)f 

a, 
(* +Bi)p; P ~0s 4 Qv. (15) -$]-~VYz(-&+ln$)(-jj-ln~) 
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A, are the eigenvector coefficients of the equations 
and C, and Cr are constants which are determined by 
the prescribed bulk temperatures at any station of the 
vessels. 

4. RESULTS 

Since the temperatures within the vessels are non- 
uniform and the mean temperature of the surrounding 
cylinder in the cross-sectional plane varies along the 
axial direction, it is appropriate to compute the mean 
temperature of the cylinder and to define the heat 
conduction shape factors in terms of the differences 
in the bulk temperatures, and mean medium and 
environmental temperatures. Because the area of the 
vessels is small compared to the area of the cylinder 
in the cross-sectional plane, the mean temperature of 
the cylinder at each cross-section can be approximated 

by 

2n 

COP d+ dp 

(23) 

The mean excess wall temperatures of the vessels can 
also be computed as follows : 

e ’ 
f 

2% 

aurO=Z;; o 8,,d4, =:(-i-lnp.)% 

(24) 

The Nusselt number of vessel a is defined as 

2dT.w 
nprcpe dz 48 

=- 
WT., - T,,) 

= Ir. (26) 

It is easily shown that the Nusselt number of vessel v, 
Nu,.,, has this same value. This value is also the same 
as for the fully developed temperature profile in a 
single pipe with a constant heat flux to the environ- 
ment. For the present solution, the net integrated heat 

flux from each vessel at any station is determined 
only by the particular solution in equation (14). This 
solution is locally the same as the solution for fully 
developed flow in a pipe with a constant axial tem- 
perature gradient. The homogeneous solution (15) 
does not contribute to the net heat flux since it does 
not contain heat sources or sinks. 

Results (23)-(26) can be used to obtain the 
expressions for the conduction shape factors urn and 
uto describing the heat transfer between the vessels, 
and between the vessel pair and the environment. 
These expressions are 

4no - 4dl 2 

%J = nkt(7’,,-TV,) = 11 
(27) 

24 +k’ ln9 

oto = 
4.0 + %I 4Bi 

nk,(T,o-T,) = F@Tzj’ 
(28) 

It is interesting to note that to 0($:,/p:), a,, depends 
on the spacing of the vessels only rather than their 
asymmetry with respect to the origin, and crI) is a 
simple function of the cylinder Biot number. 

For convenience, we let the polar angle 4,” = IC and 
S, = S, in all the following calculations. The bulk fluid 
and mean embedding medium temperature dis- 
tribution 6a,vb0 and euno along the axial coordinate 
for Bi = 0.5 and 10, which are typical values for the 
human upper limb in air and water respectively, are 
shown in Figs. 3 and 4. The solution exhibits a saddle 
point behavior. For each case, there is a critical tem- 
perature of vessel v at Z = 0, &,(O), which separates 
two families of solutions. This critical temperature 
corresponds to a very long cylinder with the right end 

_.- c ,:. 

1 2 

Axial Coordinate 

FIG. 3. Bulk temperature distributions in the vessels and 
axial profile of the mean embedding medium temperature at 
the cross-sectional plane for three different axial boundary 
conditions e,,(O). Bi = 0.5, k’ = 1, i = 2.1, pr = 10, c& = 1. 

___,a*... , ,v;-,mean. 
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FIG. 4. Bulk temperature distributions in the vessels and 
axial profile of the mean embedding medium temperature at 
the cross-sectional plane for three different axial boundary 
conditions O,,(O). Bi = 10, k’ = 1, S = 2.1, pR = 10, ci, = 1. 

maintained at the ambient temperature. As the Biot 
number is increased from 0.5 to 10, f&,(O) decreases 
from 0.45 to 0.32. The dimensionless bulk tem- 
peratures grow exponentially positive or negative 
depending upon whether the bulk temperature O,,(O) 
is greater or less than the critical value. In addition, 
the mean embedding medium temperature need not 
lie between the bulk temperatures of the vessels, as we 
assumed in ref. [lo] for the case of small heat loss 
from a tissue cylinder in the microcirculation. Figures 
5 and 6 show the non-uniform circumferential tem- 
perature distribution at the vessel walls and the 
cylinder surface at three different axial cross-sections 
for &,(O) = 0.5, and Bi = 0.5 and 10, respectively. 

5. DISCUSSION 

5.1. General behavior 
To evaluate the validity of the assumption that the 

axial temperature gradients in the convection terms 
of equations (I) and (2) can be approximated by 
the bulk temperature gradients, the normalized differ- 
ence between the local and bulk axial temperature 
gradients 

has been calculated. Figure 7 shows the difference 
distribution across vessel a for the axial boundary 
condition e,,(O) = 0.9 and 0.5 at z = 0. The maximum 
value of this normalized difference in the cross-sec- 
tional plane occurs at the point in closest proximity 
to the other vessel. The maximum deviation is less 

than 19% for the boundary value problems in Figs. 
3, 4 and 8. Thus, it is reasonable to approximate the 
axial temperature gradients in equations (7) and (8) 
by their bulk temperature gradients. 

It is interesting to note that the temperature profiles 
in the vessels do not satisfy the definition of a fully 
developed temperature profile 

throughout the vessels even though the Nusselt num- 
bers of the vessels remain constant. The temperature 
profiles in the vessels continue to deviate somewhat 
from a fully developed profile due to the countercurrent 
axial interaction, regardless of the axial distance from 
the entrance. However, the fully developed tem- 
perature profile defined in equation (29) is satisfied 
only for a constant axial temperature gradient in the 
vessels and surrounding medium as shown in ref. [ 191. 
The temperature profile (16) can thus be viewed as a 
quasi fully developed profile in which the Nusselt 
number does not change but the bulk temperature 
gradients slowly change to account for the heat loss 
at the cylinder surface and the axial interaction 
between the vessels. 

Since the present analysis assumes that the vessels 
are located in the central area of the cylinder and 
neglects terms of 0($,/p:), the heat transfer between 
vessels and cylinder is determined by the relative spac- 
ing of the vessels and not the asymmetry with respect 
to the cylinder. In other words, to O(S&/.ylp$ the heat 
transfer will not change when the vessels are displaced 
as a pair from the origin. This partly explains why the 
bulk and mean wall temperatures of the vessels are 
independent of the asymmetry parameters & and S, 
but depend on the distance between the vessels and 
the ratio of their radii. 

From Figs. 3 and 4, one observes that when 
e,,(O) = 0.5, the bulk temperatures B,, and BVw have 
a crossover point. The axial position of this point 
decreases and the temperature distribution changes 
more significantly along the axial coordinate when the 
Biot number is increased from 0.5 to 10. Depending 
on the Biot number and the bulk temperature O,,(O), 
the mean embedding medium temperature e,,,,, rela- 
tive to that of vessel a may change along the cylinder. 
For Bi = 0.5 and 6,,(O) = 0, B,,,,,-, shifts from a level 
below the bulk temperature of vessel a to one above 
at z z 0.9 as shown in Fig. 3. However, no such cross- 
over is observed for this case when the Biot number 
is increased to 10 (Fig. 4). A similar behavior is 
obtained for f&,,(O) = 0.5. Thus the direction of heat 
flow between the vessels and between the embedding 
medium and vessels may change along the cylinder, 
depending on O,,(O) and the Biot number of the cyl- 
inder which describes the heat loss to the environment. 

In Table 1 results for a, for several representative 
blood vessel pairs are compared with the predictions 
of Baish et al. [6] and Chato [2]. In ref. [2] the vessels 
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FIG. 5. Angular temperature distributions at the vessel walls and the cylinder surface under the same 
conditions as Fig. 3 at three different cross-sections for S, = s,, I$.” = n and f?,,(O) = 0.5. - - -, a ; . . ., v ; -. 

surface. 

3.20 . .."....V..... % 1.00 ___,_,,_,,,,. 
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--_ ------_________ 
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_ -1.5 0.40 
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0.00 
_ 0.20 

3.14 

Angle Ya.Yvor(P 

FIG. 6. Angular temperature distributions at the vessel walls and the cylinder surface under the same 
conditions of Fig. 4 at three different cross-sections for s. = s,, 4.” = n and L&,(O) = 0.5. - - -, a; . . ., v; -, 

surface. 
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are embedded in an infinite medium whereas in ref. 
[6] the surrounding cylinder has a uniform surface 
temperature. In the present solution ed) is based on 
the difference between the bulk vessel temperatures, 
while in refs. [2,6] it is based on the difference between 
the vessels, surface temperatures which are assumed 
uniform. This partly explains why the present model 
gives lower values for a,. As the spacing between 
vessels is decreased from 2.5 to 2.1, the effect of surface 
temperature nonuniformity on ud) becomes more 
important, resulting in much lower values for a, than 
predicted by the uniform wall temperature models 
[2,6]. The solutions in Figs. 5 and 6 clearly show the 
large variation in wall temperature. 

5.2. Application to whole limb heat transfer 

FIG. 7. Variation of the normalized difference between the 
local and bulk axial temperature gradients in the cross- 
sectional plane z = 0. Bi = 0.5, k’ = 1. J = 2.1. D. = 10, 

a,= 1. -, t&,(O) = 0.9 : - - -, f?“,(O) = 0:s: ‘. 

Radial Coordineta Pa 

*- Artery -A+- Vein -9 
I 

0.00 I . 1 . JO.80 

0 1 2 

Axial Cmxdinate. Z/L 

FIG. 8. Comparison of the bulk temperature distributions in 
the central vessels of a limb predicted by the present model 
and the Mitchell and Myers’ model [12] with the exper- 
imental data for Bazett et al. (201. Bi = 1.5, k’ = 1, S = 4, 
&= I,p,= 16.-,present;---,ref.[12];+,0,ref.[20]. 

In Fig. 8 the experimental data of Bazett et al. [20] 
for the axial temperature distribution for the artery 
and vein in a limb is compared with the present model 
and that of Mitchell and Myers [12]. Both models 
assume (a) constant blood flow rates in the vessels, 
(b) metabolic and perfusion heat sources in the sur- 
rounding tissue cylinder are negligible, (c) all blood 
and tissue properties are constant, (d) the tem- 
peratures of the artery and vein are equal at the wirst 
end. An important difference between the two models 
is that the variation of the skin surface temperature is 
neglected in ref. [ 121. Thus in ref. [ 121 constant overall 
heat transfer coefficients are assumed to characterize 
the heat transfer between vessels, and between vessels 
and the environment for a one-dimensional counter- 
current exchange. Using the same geometrical par- 
ameters, the present theory is applied to determine 
the artery and vein axial temperature distribution for 
Bi = 1.5, which accounts for the radiation heat trans- 
fer, and two Peclet numbers 7000 and 14000, which 
are typical of the arm at rest and during light exercise. 
For the limb the dimensionless coordinate z is typ- 
ically confined to the region z < 0.07. Figure 8, there- 
fore, corresponds only to a small portion of Figs. 3 
and 4. It is clear that the present model provides a 
much better agreement with experimental data for the 
axial artery and vein temperature distribution than 
the Mitchell and Myers’ model. 

The whole limb model developed in ref. [ 14 is much 
more elaborate than the simple axial interaction 
models just discussed. This more detailed model con- 
siders the local arterial bleed off and venous return 

Table 1. Shape factor a, for equal sized vessels 

Type of vessel 

Large artery 
Medium artery 
Small artery 

4 (Itm) pR 

1500 40 
500 35 
200 20 

s Present 

2.5 1.455 
2.5 1.455 
2.1 1.666 

Ref. [6] 

1.679 
1.677 
3.159 

Ref. [2] 

1.682 
1.682 
3.175 
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from the central vessels to the muscle tissue and the 
cutaneous circulation, the variation of the effective 
tissue conductivity due to blood perfusion as a func- 
tion of depth from the shin surface and the local 
variation in diameter of the arm and the central supply 
vessels as one proceeds from the shoulder toward the 
wrist. This model predicts a radial temperature profile 
which agrees well with the experimental data in ref. 
[21] but inadequately describes the axial temperature 
variation when the heat loss from the limb is large. In 
general, the results of Song et al. [13] and Mitchell 
and Myers [12] indicate that the heat loss to the 
environment is comparable or larger than the heat 
exchange between the central vessels. This failing of 
the model in ref. [13] stems from an approximation 
introduced in deriving the expression for the central 
artery-vein temperature difference and the average 
core temperature which assumes that the heat loss 
to the surroundings is small compared to the heat 
exchange between the central vessels. The present 
model, which is not limited by this restriction, can be 
readily incorporated within the general formulation 
outlined in ref. [13] in one of several ways that are 
currently being explored. Equations (1) and (2) could 
be modified to allow for the z variation of the flow in 
the central artery and vein due to the bleed off, equa- 

tion (3) solved with an effective conductivity in the 
radial direction that is determined by the Weinbaum- 
Jiji equation and the z variation of pR included in 
boundary condition (6). Alternatively, the limb could 
be divided into a small number of axial segments 
in which the vascular geometry and flow and tissue 
properties are assumed to be independent of the z 
variable in each segment, but at the interface between 
segments there is a discontinuity in the flow and 
geometry to account for the local bleed off from the 
central supply vessels and the tapering of the limb. 
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ECHANGE THERMIQUE ENTRE DES RECIPIENTS NOYES DE FACON 
DISSYMETRIQUE DANS UN CYLINDRE AVEC CONVECTION A LA SURFACE 

R&III&- Une solution analytique approchC tridimentionnelle est present&s pour le transfert thermique 
H contre-courant entre deux recipients paralleles noyes de facon dissymttrique dans un cylindre long avec 
convection H la surface. L’analyse suppose que le profil de vitesse dans les recipients est parabolique, que 
le nombre de Peclet est grand par rapport a I’unite et que le rayon du cylindre est plusieurs fois plus grand 
que les distances du centre du cylindre aux recipients. Une methode de perturbation est utilis&e en prenant 
l’inverse du nombre de Peclet comme parametre petit. La nouvelle approche prend en consideration 
I’interaction thermique axiale et d&it le champ thermique dissymCtrique tridimensionnel dti aux tem- 
peratures paribtales non uniformes des recipients dans le plan transversal. On discute I’application du 

modele a I’ensemble. 

WARMEUBERTRAGUNG ZWISCHEN UNGLEICHEN, IM GEGENSTROM 
ANGEORDNETEN BEHiiLTERN, DIE UNSYMMETRISCH IN EINEM ZYLINDER 

MIT KONVEKTION AN DER OBERFLACHE EINGEBAUT SIND 

Zusatmnenfassung-Fiir den Wlrmeiibergang im Gegenstrom zwischen parallel angeordneten Behiiltem 
wird eine dreidimensionale Niiherungsliisung vorgestellt. Die Behglter befinden sich in einem langen 
Zylinder, an dessen ObertlLhe Konvektion auftritt, und sind asymmetrisch angeordnet. Bei der Unter- 
suchung wird angenommen, daB das Striimungsprofd in den Behiiltern parabolisch, die Peclet-Zahl deutlich 
gr6Ber als 1 ist und daD der Radius des Zylinders ein Mehrfaches des Abstandes zwischen Zylinderachse 
und Behiiltem betrigt. Ein StBrungsverfahren wird verwendet, indem der Kehrwert der Peclet-Zahl als 
kleiner Wet? angenommen wird. Das neue Verfahren beriicksichtigt die therm&hen Vorglnge in axialer 
Richtung und beschreibt das dreidimensionale asymmetrische Temperaturfeld, das sich aufgrund der in 
Querschnittsebene nicht einheitlichen Temperatur der Behalter einstellt. Die Anwendung des Modells auf 

den Wlrmetibergang am gesamten Schenkel wird diskutiert. 

TEXIJIOOEMEH ME’ACAY HEOjHHiAKOBbIMH HPOTHBOTOHHbIMH EMKOCTIIMH, 
ACHMMETPHYHO PACHOJIOXCEHHbIMH B HHJIHH~PE C KOHBEKLLHEH HA 

HOBEPXHQCTH 

Anuraum-Hpenomrrcn rpexxseptioti np~6~nute~noe anannniqecxoe pemesufe zeta tieonnsiaitoaoro 
npcnmo~olutoro retutonepeaoca rbfq napannenbnbrhin exuonawr, pacnonoxetmmhin nonapH0 H 
~erpssqtio B mmminpe 6onsmo* nnimbt c ro~aennss~oiI retxaoornaneii na nonepxsmcrsr. TIpenno- 
naracrca. ~10 q+mb cropoc-rd I) mcymx nmsmca mpa6onmccmhq aiaqeme wma nercne npe- 
nbmam enmauy, a pansiyc mfmmnpa n EeQ~b~Opa3~~~e~ollollM~ueHIpo~~ 
HeMLOCTIMR.~~~b3yeTclM~O~BouryrUeHHR,Br~O~Mo6~THar~ wmaIknemi- 

~ac~ca rtmxbw mpa~cTpO~. HOB~C nps6~mxe~~oe peu~eu~e ywmmam BICliUIbHOC TCMOBOC B%H- 
t4oneticTsae H 0mcbIBae~ TpexMcp~~c acHbtMeTpHIHOe T~IUIOBO~ none, o6yc~rotu1e~t1oe 
HeoniiOpomnYcrblo TeMUCp&TJ'p CTeHOK B MOcKOcTE noncpewioro ctgemx em0cTeil. o6cyxnaeTcn 


